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Abstract—We investigate the effects of target arrival rate on
the communication and mission performance of cooperatively
controlled uninhabited aerial vehicles with task allocation per-
formed by iterative network flow. Specifically, we quantify the
effect of arrival rate on observed statistics of communication
and mission performance. The statistics of interest are peak
communication data rate, execution defects The effects are
seen in a series of vehicle-target scenarios simulated in the
U.S. Air Force Research Laboratory’s MultiUAV environment.

I. INTRODUCTION

Cooperative control of uninhabited aerial vehicles(UAVs) continues to be of significant interest as a

means to improve mission performance. The ability to com-

municate information necessary to cooperatively execute the

tasks of search, detect, classify, attack, and verify is an

essential element in enhancing team performance.

While communication, in an ideal sense, may improve

team performance in general, it is unlikely to be true for all

cases of a real system. This is the due to the typical control

algorithm design practice of initially ignoring communica-

tion issues to reduce complexity. Thus, it is necessary to

study the impact a posteriori.

Previous work [1–3] investigating communication effects

on cooperative control has focused on target distributions

that were uniformly distributed spatially within an area of

responsibility (AoR). In this work, we investigate commu-

nication effects arising from a temporal target distribution

within the AoR.

II. BACKGROUND

We begin with a short description of MultiUAV2 including
the general mission scenario architecture. This is followed

by a brief summary of the data common to each mission

scenario.

A. Simulation Framework

The MultiUAV2 simulation package [4], [5] is capable of
simulating multiple uninhabited aerial vehicles (UAV) that

cooperate to accomplish a predefined mission. Individually,
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the vehicles are capable of searching for, recognizing,

attacking, and verifying the destruction of targets.

The purpose of the simulator is to provide an environment

in which researchers can implement and analyze cooperative

control algorithms. MultiUAV2 is built using a hierarchical
decomposition where inter-vehicle communication is ex-

plicitly modeled. The package includes visualization tools

and provides links to external programs for post-processing

analysis. Each of the vehicle simulations include six-degree-

of-freedom dynamics and embedded flight software (EFS).

The EFS consists of a collection of managers or agents
that control situational awareness and responses of the

vehicles. In addition, the vehicle model includes an au-

topilot that provides waypoint navigation capability. The

individual managers contained within the vehicles include:

Tactical Maneuvering, Sensor, Target, Cooperation, Route,

and Weapons. At the top level, these managers are coded

as SIMULINK models, with supporting code written in both

MATLAB script and C++.

B. General Scenario

Let us consider a set of N simultaneously deployed

vehicles indexed by i ∈ Z
+[1, N ]. The targets, which

may be found by searching, are categorized according to

the value associated with their destruction. The individual

targets are indexed by j as they are found, so that we
find j ∈ Z

+[1, M ] with Vj as the value of target j.
The vehicles are provided no precise a priori information

about the total number of targets or their initial locations.

This information can only be obtained by the vehicles

searching for and finding potential targets via Automatic

Target Recognition (ATR) methodologies. The ATR process

is modeled using a system that provides a probability that

the target has been correctly classified. The probability of

a successful classification is based on the viewing angle of

the vehicle relative to the target, Rasmussen et al. [5]. For

this exercise, the possibility of incorrect identification is not

modeled, however targets are not attacked unless a 90%

probability of correct identification is estimated. Further

details of the ATR methodology can be found in Chandler

and Pachter [6], with a detailed discussion available in

Chandler and Pachter [7]. Once successfully classified as

a target, an attack vehicle is selected. Upon reaching the

selected target, this vehicle releases its munition and is

subsequently declared an unavailable asset, i.e. attack is a

terminal task. Finally, the selected target must be verified

as destroyed to complete the target specific task chain.

Throughout the simulation, at each target state change
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or task failure, a resource allocation algorithm is executed

to compute task assignments. The resulting assignment is

sub-optimal. However, Rasmussen et al. [8] has shown that

these assignments are typically near-optimal in an average

sense.

C. Scenario Data

Individual scenarios are composed of five (5) vehicles
and four (4) targets appearing within an AoR whose area is
approximately 64.8 km2 (25.0mi2). The nominal individ-
ual vehicle properties are: constant velocity of 112.8m/s
(370.0 ft/s) or M ≈ 0.33, constant altitude of 205.7m
(675.0 ft), minimum turn radius of 609.6m (2000.0 ft), and
sufficient fuel for the duration of the required operation. The

sensor footprint is a rectangle with a leading edge width of

600.0m (1968.5 ft) and a depth of 250m (802.2 ft), and is
offset 875.0m (0.5mi) to the fore of the vehicle.
Since effects associated with search are not the focus

of this study, vehicles begin in a line formation, and

initially follow preprogrammed waypoints for a zamboni
race coverage pattern. The targets are spatially distributed
within the AoR according to the arrival model described in

the following section, with pose-angles selected uniformly

randomly. A total of eighteen (18) sets of fifty (50) in-
dividual simulations [8] are replicated for each of three

arrival models, for a total of 2, 700 individual missions.
The maximum mission time is tf = 220 s for each arrival
model.

III. MODELS

A. Task Allocation: Iterative Network Flow

Task allocation is performed by an iterative network flow

of depth three (3) [9–11]. The acquisition of new target state
information triggers the formulation and solution of a new

optimization problem that reflects a decision based on the

team’s current relevant operating perception.

At each solution depth, it is not possible to simul-

taneously assign multiple vehicles to a single target, or

multiple targets to a single vehicle due to the integrality

property of the network flow. However, using the single

assignment process iteratively, tours of multiple assign-
ments can be generated [11]. This is done by solving the

initial assignment problem once, and only finalizing the

assignment with the shortest estimated arrival time. The

problem can then be updated assuming that the allocated

task is executed, updating target and vehicle states, and

running the assignment again. This iteration can be repeated

until all of the vehicles are assigned terminal tasks, or until

the target assignment pool is fully exhausted. The target

assignments are complete when classification, attack, and

verification tasks have been assigned for all known targets.

B. Communication

The effects based communication simulation used here is

that found in Mitchell et al. [3], where messages are passed

to simulate vehicle communication at each major model

update, which occurs at 10Hz. Such a coarsely grained
update is necessary to maintain a reasonable run-time for

individual scenarios to complete on a desktop/personal

computer, in a larger Monte-Carlo sense. The minor model

update, which controls the vehicle dynamics and other

underlying subsystems, is scheduled at 100Hz.
A broadcast communication model is implicitly assumed
for the vehicle communication. While not specifically tar-

geted to address a particular physical implementation, such

a model encompasses the typical view that the communi-

cations are time-division multiplexed.

1) Data Rate: As a consequence of the major model
update, we define the data rate necessary at a given sim-
ulation step as the total size of the messages collected, in

bits, divided by the duration of the model update, yielding

a rate in bits/s. This simplistic definition is a result of the

elementary requirement that each vehicle must have access

to all the currently generated messages by the next major

update in order to plan. Currently, all message data is rep-

resented in MATLAB using double-precision floating-point

numbers, and in the computation of data rate, the message

overhead is not considered, only the message payload. In

a physical communication implementation there would be

considerably more overhead, e.g. redundancy, error cor-

rection, encryption, etc. Thus, retaining double-precision

in the ideal communication model remains a reasonable

indicator of data rates, particularly since we are interested

only in an initial estimate and, more importantly, a relative

comparison of communication necessary to perform under

various conditions.

2) Information Requirements: The implementation of the
task allocation algorithms outlined above requires com-

munication of information between vehicles. The resulting

overall optimization problem can be characterized as both

centralized and redundant, i.e. each vehicle computes its

own network flow.

Momentarily disregarding communication issues, the

problem, in general, requires a synchronized database of

target and vehicle state information. With this, each vehicle

computes the benefits for the arcs in the network described

previously, and solves an optimization problem to maximize

the total benefit. From Mitchell et al. [2], the MultiUAV2
network flow implementation requires the following com-

municated information: ATR data; target and vehicle posi-

tions; target, vehicle, and task status; and vehicle trajectory

waypoints.

C. Arrival Process

Target detection interarrival times are represented as a

stationary Poisson process of constant rate λ. To increase
the likelihood that targets will appear within the AoR, they

are required to appear only after a minimum time offset,

taken as tmin = 30 s. Our choices for the constant arrival
rates λi ∈ {2, 10, 20} s are motivated by a desire to detect
all targets within the team’s initial pass into the AoR, which

has a one-way transit time of tTR ≈ 70 s.
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Since both the number of events NE that will occur

within the AoR and the maximum time tf are known as part

of the simulation truth information set, we model the inter-

arrival times as a sorted NE-tuple of uniformly distributed

random variates xj ∈ U(0, 1) with j ∈ Z
+[1, NE ] [12,

p. 369]. Thus, the kth event time is prescribed by

tk = tmin + �λi

k∑
j=0

xj�, k ≤ NE , (1)

where �x� is the largest integer y such that y ≤ x. The
arrival times tk are restricted to occur as integer multiples
of the major model update.

1) Assumptions: Before proceeding further, we address
the assumptions necessary to select this arrival process

model. There are several modeling assumptions that must

be considered here. First is the requirement of event serial-

ization.

By selecting stationary Poisson process model, we en-

force a sequence of single events separated by the mod-

eled interarrival times. Previous work [3] using targets

distributed spatially in a uniformly random fashion indicates

that simultaneous detections occur, and inflict a worst

case strain on communication network capacity. Clearly

such detection event sequencing is not possible with the

chosen model. This would seem to indicate that a better

modeling choice would have been a batch or compound
Poisson process [13]. However, the communication of the

simultaneous detection of k targets is a subset of a larger
group of simultaneous communication events that can be

triggered by multiple simultaneous classification, attack or

verification of targets in addition to multiple simultaneous

task failures. Since there appears to be a sufficiently large

set of these batch communication events, the current arrival

model should not exclude such events entirely. An addi-

tional assumption to consider is the homogeneity of the

selected arrival process model.

The stationary Poisson processes assumes that the num-

ber of events occurring in disjoint intervals are independent,

i.e. possesses independent increments. It is unlikely that,
once a target has been detected, an adversary would dis-

tribute assets both independently and identically. Consider-

ing the nature of integrated air defense systems, detection of

additional assets would seem more likely after the discovery

of certain specific asset types, e.g. early warning radar.

This could create an arrival rush that would invalidate the

assumption of homogeneity. In this case, a better choice

may have been a nonstationary Poisson process that more

realistically considered the correlation of interarrival times

for individual target types. Unfortunately, this requires spe-

cific data to construct λ(t) that is generally security sensitive
and so not typically available.

Defending the assumption of homogeneity brings into

focus the primary motivation for selecting the current arrival

process models: in the absence of specific data to support

a particular arrival distribution, the stationary Poisson is a

Scenario

C
um
ul
at
iv
e
A
vg
R
at
io
:

ȳ
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ȳ50.

commonly preferred process model.

IV. TERMINATION ANALYSIS

When using Monte-Carlo methods to observe a perfor-

mance measure, ensuring a sufficient statistical weight by

performing an adequate number of replications is essential.

In previous work [1–3], [8], we chose to look at the weight

provided by the cumulative average, ȳj =
∑j

k=1 xk, of

the measure of interest. As in Ref. [3], our fundamental

measure is the maximum data rate. Considering the first

data set in Fig. 1, we see a slightly more useful form of the

maximum data rate cumulative average, viz. ȳj/ȳ50, than

that used in Ref. [3]. This provides a clearer indication of

ȳj’s relative weight for each λi. We notice from Fig. 1 that

we remain within approximately 2% of the final cumulative
average ȳ50 for λ2, λ3 after only slightly less than 30 and
20 replications, respectively. However we must continue to
nearly 40 replications to remain within 1% of ȳ50 for each.

The cumulative average for λ1 is less well behaved, and

begins to stabilize after 45 replications. Similar results are
found in the remaining data sets.

In addition to the above, we would like to consider the

communication data rate of each replication as a random

variable Xj , and determine the relative dependence of Xi,

Xj for i �= j and i, j ∈ Z
+[1, 50]. Our interest here is

to verify that the data rates observed in the replications

are, at worst, only weakly correlated, and thus sufficiently

independent to be useful. Such a determination would lend

credence to the notion that the maximum data rate could be

treated as an independent and identically distributed (IID)

random variable, since it is one particular observation of an

independent random process.

The scenario data rate correlation coefficients ρij from

the first data set can be seen in Figs. 2–4. From this,

we see that the data rate is weakly positively correlated

for λ2, λ3, Figs. 3 and 4, with relatively few exceptions.
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Fig. 2. Scenario data rate correlation coefficient: ρij , i �= j: λ1 = 2 s.

Although it is difficult to determine from the figures, the

negatively correlated coefficients reside in the uncolored

contour space and are valued such that ρij < −0.01.
The correlation coefficients for λ1 are seen in Fig. 2.

Here, we see larger positive correlation, than for the λ2, λ3

cases. However, given the comparatively small interval size,

this is not unexpected. Fortunately, the increased positive

correlation remains relatively small. As with the other cases,

the negative correlations were ρij < −0.01. Similar results
are found in the remaining data sets.

In support of the IID nature of the maximum data rate,

we perform a Kruskal-Wallis test of the maximum data rate

over all data sets for each λi. From Table I, we see that the

computed P -values are sufficiently far away from zero to
establish process commonality. However, we note that Pλ1

is considerably smaller than Pλ2
, Pλ3

, suggesting a trend

where in faster arrival rates may frustrate our desire for an

IID random variable. Nevertheless, with the current data,

we conclude that the scenario data rate maintains sufficient

replication independence.

TABLE I

KRUSKAL-WALLIS P -VALUES FOR MAXIMUM DATA RATE.

Arrival Rate P -value
λ1 0.209
λ2 0.448
λ3 0.417

V. RESULTS

To begin, we examine the number of plan execution
defects encountered for each arrival rate λi. In a single data

set, there are, nominally, 600 tasks to perform per arrival
rate, given that there are a minimum of three (3) target
states to process for each of four (4) targets in each of
the fifty (50) replications. This is the minimum number of
transitions that must occur since poor look-angles can cause
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Fig. 3. Scenario data rate correlation coefficient: ρij , i �= j: λ2 = 10 s.
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Fig. 4. Scenario data rate correlation coefficient: ρij , i �= j: λ3 = 20 s.

classification failures, and inability to meet timing windows

may cause verification failures. In the case of stolen tasks,
we imply that the plan did not react quickly enough to the

changing environment. In the case of classification, as a

result of vehicle positions, a vehicle is able to increase the

ATR value of a target as a task that it was not assigned.

Fig. 5, presents a visual summary of the plan execution

defects encountered. Here, we are interested in comparing

the total number of defects occurring for a given arrival

rate λi. For this, the notched and whiskered box-plots in

Fig. 5 provide a visual t-test that allows for a straight
forward comparison. Several trends are readily apparent.

First, we notice that for all execution defects, the λ1 mean

is measurably different, i.e. there is no notch overlap. The

execution defect means for arrival rates λ2, λ3 generally

agree and are reasonably similar for all but failed classifica-

tion, where we see a measurable increase as the arrival rate

increases. A second trend is the relatively large number of
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stolen tasks associated with arrival rate λ1. We reason that

stolen tasks occur as targets arrive faster because there is

increased target crowding compared to the sensor footprint

size, so that it is more likely that a stray sensor will

unintentionally increase a target ATR value or complete

an unassigned verify. For failed and stolen verification,

the increased arrival spacing provides better matching of

flight route to planned route, thus decreasing missed timing

window task failures. It is not immediately clear why failed

classifies increase with increased arrival rate.

Histograms of the maximum data rate distributions are

seen in Figs. 6. The distributions seen in Figs. 6b and 6c are

similar to that found in [3], where targets were distributed

spatially in a uniformly randomly manner, in that there

appears to be two primary modes of operation: a median

mode and a slightly more frequent lower quartile mode.

In the cases of Figs. 6b and 6c, the lower portion of the

Time [sec]

D
at
a
R
at
e
[k
bi
ts
/s
]

0 50 100 150 200 250
0

20

40

60

80

100

120

140

λ1 = 2 s

Fig. 7. Communication history: largest maximum data rate, λ1 = 2 s.
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maximum data rate distribution comprises slightly more

than 50% of the replications. This low maximum data
rate corresponds to the ideal operational mode, were all

communication events are serialized with relatively little

sustained bursting. We also note from Fig. 6a that an

operational mode more frequently occurs that requires a

slightly higher maximum data rate. Thus, in general, as the

arrival rate becomes faster, the maximum data rate is more

likely to shift higher.

Figs. 7–9 represent the communication data rate history,

of the first data set, containing each arrival rates’ λi maxi-

mum data rate. We notice that as the arrival rate slows, the

duration of communication bursts decreases and becomes

more widely spread over the mission time, as expected.

We note that the peak rate increases from λ1 and is nearly

identical between λ2 and λ3. It is surprising, however, that

the least maximum data rate seen in Fig. 7 corresponds
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to the fastest arrival rate, λ1. To understand this, we must

recall our previous statement that a faster arrival rate merely

makes it statistically more likely that the maximum data rate

will be higher; there is no guarantee.

VI. CONCLUSIONS

In this work, the effect of the target arrival rate on the

communication and mission performance of cooperatively

controlled uninhabited aerial vehicles with task allocation

performed by iterative network flow was investigated. In

general, the mission performance with respect to plan

execution defects was similar for each of the two slowest

arrival rates, with the exception of failed classifications–

the reason for the failed classification behaviour is as

yet unclear. The fastest arrival rate did have a significant

and measurable effect on plan execution defects, generally

driving them higher, where as before, failed classification

remained the exception. Regarding communication, in gen-

eral, faster arrival rates drove the maximum communication

data rate higher. It also caused significantly more burst

communication as compared to the slower arrival rates.

Regarding the actual magnitudes of the maximum data

rates, these should not be taken as exact requirements or

measures, particularly because no specific communication

protocol or hardware implementation has been defined.

Rather, the magnitudes should be seen to represent tradi-

tional engineering estimates that say more in their relative

significance than individual significance. With that said,

these values do indicate the amount of raw data neces-

sary to drive the cooperative control algorithms, allowing

for comparisons between individual implementations of an

algorithm.
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